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Abstract

A singular perturbation method is employed in order to develop an analytical solution to the problem of the unsteady
mass transfer from a sphere immersed in an unbounded saturated porous medium[ At the inception of the process\ the
sphere is suddenly leaking a contaminant\ which spreads in the porous medium by convection and di}usion[ The
boundary conditions at the surface of the sphere are either constant concentration or constant mass ~ux[ Throughout
the process the Peclet number is small but _nite[ The time and length domains of the problem are separated in four sub!
domains\ which result from the combinations of short and long times\ and inner and outer regions[ Based on the physical
analysis of the problem\ the governing equations in these regions are derived and solved in the time domain or the
Laplace domain[ A matching technique is used to derive the _nal expressions for the contaminant concentration _eld
and the mass transfer coe.cients[ Hence\ analytical asymptotic solutions for the concentration of the contaminant in
the entire space and time domains are derived in terms of the Peclet numbers[ The solutions are validated by comparison
with known analytical results[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a radius of the sphere
An coe.cients de_ned in "28#
Bn coe.cients de_ned in "32#
c\ C concentration functions
De e}ective di}usivity
er\ ez\ eu unit vectors
erfc complementary error function
En functions de_ned in "37#
F gauge functions
` gravity
Gn"r\ t# functions de_ned in "45#
H"t# Heavyside function
Hn"S# functions de_ned in "17#
in modi_ed Bessel functions
In Bessel functions
K permeability
LI Oseen distance
Ln"r\ T# functions de_ned in "36#
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n outward vector
p pressure
Pn Legendre polynomial
Pe Peclet number
r\ R radial coordinates
s\ S variables in Laplace domain corresponding to t and
T
Sh Sherwood number
t\ T time variables
U ~uid velocity far from the sphere
v ~uid velocity near the sphere
W"T# functions de_ned in "26#
x\ y\ z coordinates
Zn"r\ T# functions de_ned in "34a#[

Greek symbols
z cos u

u angular coordinate
L function de_ned in "45#
m ~uid viscosity
r ~uid density
tD di}usion time scale
C stream function[
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0[ Introduction

The subject of heat and mass transfer through porous
media is of importance in chemical and environmental
processes as well as environmental remediation oper!
ations[ Heat transfer through rocks or soil\ leakage from
a vessel with porous insulation around it\ contaminant
leakage from buried drums\ or contaminant leakage from
storage underground cavities and their consequent trans!
port through geological strata\ are among the several
physical processes\ where knowledge of the unsteady
transport of a scalar quantity "mass of a pollutant# is
of importance for remediation[ The subject of transport
through porous media has been dominated by numerical
studies[ Among the recent publications\ one may mention
the study by Nguyen and Paik ð0Ł who obtained numeri!
cal results for the unsteady convection from a sphere
with variable surface temperature[ Pop and Ingham ð1Ł
performed a computational study on the natural con!
vection from a sphere in a saturated porous medium\
and later Kimura and Pop ð2Ł studied numerically the
conjugate convection from a sphere in a porous medium[
Recently Yan et al[ ð3Ł performed a numerical study of
the transient free convection from a sphere enclosed in a
porous medium[

There are very few analytical studies on this subject[
Among the earlier analytical studies on the steady!state
forced heat convection in porous media is Bejan|s ð4Ł for
the transient temperature _eld from a point heat source\
buried in a ~uid!saturated porous medium[ Bejan used
an asymptotic expansion in terms of Ra and derived
expressions for the transient "of the order of Ra0# and
steady!state "of the order of Ra2# heat transfer[ A good
review on the subject can be found in a more recent
monograph by Nield and Bejan ð5Ł[ Among the more
recent analytical expressions on the subject\ Sano and
Okihara ð6Ł examined the natural convection around a
sphere immersed in a porous medium at very small Ray!
leigh numbers[

Analytical solutions to any physical process strengthen
our understanding and comprehension of the physical
mechanisms that play an important role in the processes[
They also yield information and insight on the processes\
which numerical solutions do not[ Analytical solutions
are used for the validation of complex numerical codes\
which may subsequently be extended and used for the
solution of more complex transport problems[ In
addition\ they may yield boundary conditions for certain
numerical codes[ For these reasons an attempt is made
here to derive an analytical solution for the unsteady
mass transport problem in a porous medium[ A singular
perturbation method is used in order to analyze the con!
taminant transport process in a porous medium\ which
is due to the sudden leakage from a spherical enclosure[
The time and space domain is divided in four sub!
domains and asymptotic solutions for the concentration

function are obtained in every sub!domain[ The matching
conditions at the boundaries of the sub!domains are used\
in order to derive a generally valid global solution for the
contaminant concentration in the porous medium[

The solution technique that will be followed for the
problem of mass transfer does not take into account
gravity:buoyancy e}ects[ For this reason\ the solution
developed may not be appropriate for the analogous
problem of heat transfer\where natural convection may
play an important role in the case of low Peclet number[
However\this solution for the mass transfer problem will
be applicable to the analogous problem of heat con!
vection from a sphere inside a porous medium\ whenever
the natural convection may be neglected and there is a
correspondence in the governing equations and boundary
conditions of the two problems[

1[ Basic equations and general method of solution

The main assumptions of this study are as follows]

"a# the sphere\ of radius a\ is immersed in an unbounded
~uid!saturated porous medium^

"b# the velocity _eld inside the porous medium is gov!
erned by Darcy|s law and is unidirectional far from
the sphere^

"c# the Peclet number throughout the process is _nite
but small^

"d# buoyancy e}ects in the ~uid are neglected[

The second assumption implies that there may be slip
at the surface of the sphere[ However\ it will be shown in
Appendix B that\ for the processes considered here\ the
thickness of the ~uid boundary layer at the surface of the
sphere is very small in comparison to the radius of the
sphere "less than one millionth of the radius of the sphere#
and\ hence\ the e}ects of this boundary layer on the
velocity _eld may be neglected[

A schematic of the process and of the coordinate sys!
tem is depicted in Fig[ 0[ The presence of the sphere
creates a disturbance to this velocity _eld\ which is essen!
tially con_ned to the vicinity of the sphere[ Far from
the sphere\ the velocity _eld is unidirectional[ At the
inception of the process "t � 9#\ a contaminant ~uid
starts leaking from the sphere[ The two ~uids mix freely
and are transported in the porous medium[ Without any
loss of generality\ we consider that the initial con!
centration of this contaminant in the porous medium
is zero "initially {contaminant!free| medium#[ After the
inception of the leakage process "t × 9# we contemplate
two boundary conditions at the surface of the sphere] "a#
the concentration of the contaminant is constant\ cs9 and
"b# the mass ~ux is constant[ The solution to be derived
in the subsequent sections of this manuscript pertains to
the constant surface concentration problem[ The results
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Fig[ 0[ The ~ow and the coordinate system[

for the constant mass ~ux problem are derived by the
same method and are simply presented in the last section[

The velocity _eld v and the continuity condition of
the external ~uid\ which initially saturates the porous
medium\ are given by the following equations]

v � −
K
m

9"p¦r`z#\ 9 = v� 9[ "0#

The boundary conditions for the external ~uid are]

v = n� 9 at r � a

v � −Uez at r : �[ "1#

Hence\ we obtain the following velocity _eld for the exter!
nal ~uid "see Appendix A#]

v � −U 00−
a2

r21 erer = ez−U 00¦
a2

1r21 eueu = ez[ "2#

After the inception of the leakage\ at t � 9\ an unsteady
mass transfer process from the sphere commences[ The
transient di}usion equation governs the distribution of
the contaminant in the porous medium[ For convenience\
we introduce the following dimensionless variables\
which are denoted by an asterisk "�#[ We consider as
the characteristic length of the process the radius of the
sphere\ a\ and as characteristic time the di}usion time
scale\ tD � a1:Dc]

"x�\ y�\ z�# � 0
x
a

\
y
a

\
z
a1 \ r� �

r
a

\ t� �
tDe

a1
\

c�"x�\ t�# �
c"x\ t#

cs9

\ v� �
v

U�

\ Pe �
U�a
De

[ "3#

Upon substitution into "2#\ the following dimensionless
velocity _eld is obtained in the spherical coordinates]

v�r � −$0−
0

"r�#2% cos u\ v�u � $0¦
0

1"r�#2% sin u "4#

and the governing equation of the contaminant transport
process becomes in dimensionless form]

1c�
1t�

¦Pe v� = 9�c� �9�1c� "5#

with initial and boundary conditions de_ned as follows]

c�"x�\ t�# � 9 at =x�= × 0\ t� � 9

c�"x�\ t�# � H"t�# at =x�= � 0\ t� × 9

c�"x�\ t�# : 9 as =x�= : �[ "6#

Equations "4#Ð"6# pose an unsteady convection!
di}usion problem[ It is expected that\ at low Peclet
numbers\ the di}usion process will dominate in the vicin!
ity of the sphere[ However\ as long as Pe is _nite\ at
distances far from the sphere\ there will always be a
region\ where the convection part of the process becomes
signi_cant and may even dominate the process[ It is
apparent that the problem has two length scales and
hence\ the regular perturbation technique cannot be
applied to it[ For this reason\ we will use a singular
perturbation method in the space and time domains[ A
similar method was introduced by Proudman and Pear!
son ð7Ł for the steady!state motion of a sphere and a
cylinder inside a viscous ~uid[ Bentwich and Miloh ð8Ł
and\ later\ Sano ð09Ł extended the method to the problem
of the unsteady momentum transfer of a sphere at low
Reynolds numbers[ We will adapt this method to the
problem of unsteady mass transfer from a sphere in a
saturated porous medium\ and will obtain solutions for
the transport of a scalar\ the concentration of the con!
taminant and the instantaneous rate of mass transport[
For this purpose\ we decompose the time!space domain
into four sub!domains] "i# short time and inner region
"the immediate vicinity of the sphere#^ "ii# short time and
outer region " far from the sphere#^ "iii# long time and
inner region^ and "iv# long time and outer region[ The
so!called {Oseen distance|\ LI � a Pe−0\ measured from
the center of the sphere is the approximate boundary
between the inner and outer regions[

Shortly after the inception of the leakage process\ the
contaminant di}usion and associated e}ects on the
porous medium are con_ned to the inner region\ while
the outer region is undisturbed[ At short times\ the con!
vective term of the governing equation may be neglected
in the entire ~ow _eld and\ hence\ a classical perturbation
method may be applied to this problem[ The spaceÐtime
sub!domains that were de_ned above as "i# and "ii# may
be combined together as one\ namely the short!time sub!
domain[ The solution in the short!time sub!domain is
constructed by satisfying the boundary conditions at the
surface of the sphere and at in_nity[ The development of
the other two solutions in the sub!domains "iii# and "iv#
is made according to the following matching conditions]

"a# the inner expansion C"i# satis_es the boundary con!
dition on the surface of the sphere^
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"b# the outer expansion C"9# satis_es the boundary con!
dition at in_nity^

"c# both inner and outer expansions match identically in
the overlapping regions\ where both expansions are
expected to be valid^

"d# the long!time expansions match the short time
expansions in the overlapping time domain[

For convenience\ in the equations that follow\ we will
omit the superscript � of the dimensionless variables[ It
must be remembered\ however\ that the variables used
hitherto are dimensionless[

2[ Short!time expansion

Shortly after the inception of the process\ the mass
transfer from the sphere is dominated by the unsteady
di}usion[ The time variable in this sub!domain will be
denoted by the lower case letter t[ The concentration of
the contaminant in the ~uid may be given by a regular
expansion of the concentration function c"x\ t# as follows]

c � c9¦Pe c0¦= = = [ "7#

It must be pointed out that in this case\ the convection
at the far _eld has not commenced and\ therefore\ all
terms pertinent to this mode of heat transfer may be
neglected[ For this reason\ a _rst order expansion of the
concentration function is su.cient for the development
of the solution[ Substituting the last expression into equa!
tion "5#\ we obtain the governing equations for the _rst
two order expansions of the concentration _eld as fol!
lows]

91c9 �
1c9

1t
"8a#

91c0 �
1c0

1t
¦v =9c9[ "8b#

A solution of the zeroth order expansion c9\ for the
concentration _eld\ may be obtained by using Laplace
transforms[ The solution of the equation\ which satis_es
the pertinent boundary conditions in the time domain\
is]

c9"r\ t# �
0
r
erfc 0

r−0

1zt1�
0
r $0−

1

zp g
r−0

1zt

9

e−u1

du%
"09#

where erfc denotes the complementary error function[
From "8b# and "09# we obtain the following expression

for c0 in the Laplace domain]

"91−s#c¹0 � 00−
0

r21
0¦zsr

sr1
e−zs"r−0# P0"z# "00#

where Pn"z# is the Legendre function of order n and
z � cos u[

The last equation was solved by the method of {vari!

ation of parameter|[ After applying the boundary con!
ditions for c0 both at surface of the sphere and in_nity\
the solution for c0 becomes as follows]

c0"r\ z\ t# � $0−
0
1

¦
2

3r1
−

0

3r21 erfc 0
r−0

1zt1
¦

2
3 0

0
r
−

0

r11 er−0¦t erfc 0
r−0

1zt
¦zt1%P0"z#[ "01#

A glance at "01# proves that the expression for the _rst!
order contribution to the mass transfer is symmetric in z[
Therefore\ the net contribution of c0 to the mass transfer
coe.cient "which results from a surface integral of the
gradient of c0# is zero[

3[ Long!time\ inner region expansion

Since the di}usion process dominates in the vicinity of
the sphere\ the convection in the inner region may be
neglected in this sub!domain at all times[ In this case\ it
is convenient to scale the dimensionless time in a di}erent
manner\ which will be denoted by the capital letter T[
The equation\ which de_nes T\ is as follows]

T � Pem t[ "02#

It will be proven in the next section that the parameter m
must be equal to two[ Hence\ the following expression
for the concentration _eld at long times and in the vicinity
of the sphere\ C"i#\ is obtained]

91C "i# � Pe1 1C "i#

1T
¦Pe v =9C "i# "03#

where the superscript "i# denotes that the function is
pertinent to the inner region of the sphere[ In this sub!
domain\ we choose a second!order expansion for the
concentration _eld[ The concentration function is then
represented by the following expression]

C "i# � C "i#
9 ¦Pe C "i#

0 ¦Pe1C "i#
1 ¦= = = [ "04#

Substituting "04# into "03# we deduce from the balance
of the several powers of Pe the following three di}erential
equations for the functions C "i#

n "n � 9\ 0\ 1#]

91C "i#
9 � 9\ 91C "i#

0 � v =9C "i#
9 \

91C "i#
1 � v =9C "i#

0 ¦
1C "i#

9

1T
"05aÐc#

The "dimensionless# initial conditions at the surface of
the sphere for the three functions C "i#

n "n � 9\ 0\ 1# are]
C "i#

9 � H"T#\ where H"T# is the Heavyside step function\
C "i#

0 � 9 and C "i#
1 � 9[ It must also be pointed out that\

since a solution is sought for the inner region\ only the
boundary conditions at the surface of the sphere need to
be satis_ed\ in the solution of the equations and that the
boundary conditions at the far _eld need not be satis_ed[
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4[ Long!time\ outer region expansion

In this sub!domain the contaminant has already
entered the outer region by di}usion[ Now\ both the
di}usion and advection processes are of the same order
of magnitude\ even as Pe : 9[ Hence\ we scale both the
time variable and length variable as follows]

R � Pen r\ T � Pem t[ "06#

Substituting the scaled variables into the dimensionless
mass transfer equation\ we obtain the following
expression for the concentration _eld in this sub!domain
C"o#]

Pe1n 91
RC "o# � Pem 1C "o#

1T
¦Pen¦0 v =9RC "o# "07#

where the superscript "o# denotes that the function per!
tains to the outer region[ It is obvious\ that the only
choice\ which retains both the conduction and the advec!
tion terms\ is n � 0 and m � 1[ This result was anticipated
in the previous section[

The concentration _eld C"o# in this sub!domain may
again be represented by an asymptotic expansion with
gauge functions F "o#

n "Pe#[ The gauge functions are
unknown and will be determined by the matching
requirements in the time!space domain]

C "o# � F "o#
9 "Pe#C "o#

9 ¦F "o#
0 "Pe#C "o#

0 ¦= = = [ "08#

Upon substitution of C"o# in the governing equation
"07#\ we obtain the same di}erential equation for both
the expansion functions C "o#

9 and C "o#
0 regardless of the

gauge functions[ The resulting expressions in the spheri!
cal coordinates may be written as follows]

91
RC "o#

j �
1C "o#

j

1T
−z

1C "o#
j

1R
−

0−z1

R
1C "o#

j

1z
\ j � 9\ 0[

"19#

In order to obtain the solution for equation "19# we
transform it in the Laplace domain and use Goldstein|s
ð00Ł transformation]

C "o#
j "R\ z# � exp 0

−Rz

1 1G"R\ z#\ j � 9\ 0 "10#

to simplify the resulting expression[ Hence\ the di}er!
ential equation for the function G"R\ z# assumes a simpler
form]

91
RG−"S¦0

3
#G � 9[ "11#

Since "11# is an equation for the outer region\ it must
satisfy the boundary conditions far from the sphere\ but
not necessarily the conditions on the surface of the
sphere[ A general solution to the last di}erential equa!
tion\ which satis_es the boundary conditions at in_nity\
yields the following expression for the Laplace trans!
forms of the functions C "o#

j ]

C "o#
j � exp 0

−Rz

1 1 s
�

n�9

Hj
n"S#ði−n−0"kR#

−in"kR#ŁPn"z#\ j � 9\ 0 "12#

where k �"S¦0:3#0:1 and the functions Hj
n"S# " j � 9\ 0#

will be determined by the matching requirements[ The
symbols in"x# denote the modi_ed spherical Bessel func!
tions\ which are related to the ordinary spherical Bessel
functions In"x# by the expression]

in"x# �X
p

1x
In¦0:1"x#\ n is integer[ "13#

5[ Solution of the equations and matching of the

solutions

The matching procedure for the solutions is con!
ceptually straightforward\ but algebraically complicated[
For this reason it will be presented in some detail[ As
matching conditions in the time domain\ we simply
require that the solutions in the short! and long!times
match in their overlapping region[ Essentially\ this con!
dition is a matching of the expression in equations "7#
and "08# as t approaches large values and T tends to
small values[ The matching procedure may be performed
in the Laplace domain by using the following property
of the Laplace transforms]

g
�

9

x"t# e−st dt � g
�

9

Pe−1 x"Pe−1 T# e−sT Pe−1

dT

� g
�

9

Pe−1 X"T# e−ST dT "14#

which implies\

s � Pe1 S\ x¹ "s# � Pe−1 XÞ"S#[ "15#

Hence\ the matching requirement in the Laplace domain
becomes]

Pe1 ðc9¦Pe c0¦= = =Ł "s:9\r:�\z# � ðF9"Pe#C "o#
9

¦F0"Pe#C "o#
0 ¦= = =Ł "S:�\R:9\z#[ "16#

Substituting the pertinent expressions in the above equa!
tion leads to the following conditions\ which must be
satis_ed asymptotically]

F "o#
9 "Pe# � Pe\ AsmpSð0H

9
9"S# �

0
S

\

H9
n "S# � 9 for n − 0

F "o#
0 "Pe# � Pe1\ AsmpSð0H

0
9"S# �

0

zS
\

H0
n "S# � 9 for n − 0[ "17#

It must be pointed out that the solution to the matching
conditions for H9

9"S# and H0
9"S# are not unique[ For

example\ H9
9"S# � 0:z"S"S¦j##\ with j being an arbi!
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trary constant\ also satis_es the matching condition[ The
problem of non!uniqueness is resolved by ensuring that
the resulting solution in the time domain satis_es the
steady!state solution as T : �[ The steady solution in
the outer region\ C "o#

Steady"R\ z# is as follows]

C "o#
Steady"R\ z# �

Pe
R

exp $
R
1
"z¦0#%

¦
Pe1

1R
exp $

R
1
"z¦0#%¦O"Pe2#[ "18#

The last equation imposes the following two require!
ments on the functions H9

9"S# and H0
9"s#]

lim
S:9

ðSH9
9"S#Ł � 0 and lim

S:9
ðSH0

9"S#Ł � 0
1
[ "29#

Therefore\ the only acceptable choices for H9
9"S# and

H0
9"s# are]

H9
9"s# �

0
S

and H0
9"S# �

zS¦0
3

S
[ "20#

Upon substitution in equation "12# and inversion in the
time domain one obtains the following expressions for
the functions C "o#

9 and C "o#
0 ]

C "o#
9 "R\ z\ T# �

e−
Rz

1

R $
e−R:1

1
erfc 0

R

1zT
−

zT
1 1

¦
eR:1

1
erfc 0

R

1zT
¦

zT
1 1% "21#

and

C "o#
0 "R\ z\ T# �

e−
Rz

1

R $
e−

0
30

T¦
R1

T 1
zpT

¦
e−R:1

3

×erfc 0
R

1zT
−

zT
1 1−

eR:1

3
erfc 0

R

1zT
¦

zT
1 1% [ "22#

At this stage\ we may perform the matching expansion
in the inner sub!domain at long times from the inception
of the process\ with the functions C "i#

n "n � 9\ 0\ 1#[ From
the governing equation for this sub!domain and the
boundary conditions at the surface of the sphere we
obtain]

C "o#
9 � 6

A9"T#
r

¦ðH"T#−A9"T#Ł7P0"z#

¦ s
�

n�0

An"T# 0
0

rn¦0
−rn1Pn"z# "23#

where An"T# are functions of time\ to be determined by
the matching conditions[ The matching requirement in
this case yields the condition]

ðC "i#
9 ¦Pe C "i#

0 ¦Pe1 C "i#
1 ¦= = =Ł "T\r:�\z# � ðF9"Pe#C "9#

9

¦F0"Pe#C "9#
0 Ł "T\R:9\z#[ "24#

The asymptotic limit of the right!hand side of "24# ðto be
denoted as RHS"24#Ł may be obtained in a straight!
forward manner]

RHS"24# � PeW
H"T#

R
¦$W"T#

H"T#
1

P0"z#%
¦R $

H"T#
5

¦
W"T#

1
P0"z#¦

H"T#
01

P1"z#%w
¦Pe1 W

W"T#
R

¦$
H"T#

3
W"T#

1
P0"z#%w

¦O"Pe2# "25#

where the function W"T# is de_ned as follows]

W"T# �
0
1

erf 0
zT
1 1¦

e−
T
3

zpT
�

0

zp g
zT

1

9

e−u1

du¦
e−

T
3

zpT
[

"26#

We replace r � R:Pe in equation "23# and then substitute
the result in the left!hand side of "24#\ which is denoted
as LHS"24#[ Hence\ we obtain the following expression]

LHS"24# � ðH"T#A9"T#Ł¦PeW
A9"T#

R w
¦ s

�

n�0

An"T# 0
Pen¦0

Rn¦0

Rn

Pen1Pn"z#¦O"Pe1#[ "27#

By matching the terms of "27# with the terms of the
corresponding orders of Pe in equation "25#\ we deter!
mine the unknown functions An"T#]

A9"T# � H"T#\ An"T# � 9 for n − 0[ "28#

Therefore\ the _nal expression for the zeroth!order solu!
tion in the inner region becomes]

C "i#
9 "T\ r\ z# �

H"T#
r

P0"z#[ "39#

Now\ from the governing equation for C "i#
0 ðequation

"05b#Ł\ we obtain the following di}erential equation for
this function]

91C "i#
0 � 0

H"T#

r1
−

H"T#

r4 1P0"z#[ "30#

The general solution of "39# that satis_es the boundary
conditions at the surface of the sphere is]

C "i#
0 � B9"T# 0

0
r
−01¦$−

H"T#
1

−
H"T#

3r2

¦
B0"T#

r1
−0B0"T#−

2H"T#
3 1 r%P0"z#

¦ s
�

n�9

Bn"T# 0
0

rn¦0
−rn1Pn"z# "31#
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where the coe.cients Bn"T# may also be deduced from
the matching requirements[ The results of the matching
procedure are]

B9"T# � W"T#\ B0"T# �
2H"T#

3

and Bn"T# � 9\ for n − 1[ "32#

Hence\ the functional form of C "i#
0 becomes]

C "i#
0 � 0

0
r
−01W"T#−0

0
1

¦
0

3r2
−

2

3r11H"T#P0"z#[

"33#

From the expressions of C "i#
9 and C "i#

0 and the governing
equation "05c#\ one may derive a di}erential equation
for C "i#

1 ]

91C "i#
1 � v =9C "i#

0 ¦
1C "i#

9

1T
0 s

1

n�9

Zn"r\ T#Pn"z# "34#

where the functions Zj"r\ T# are as follows\

Z9"r\ T# � $
0
2r

¦
0

01r3
−

2

3r5
¦

0

2r6%H"T#

Z0"r\ T# � 0
0

r1
−

0

r41W"T#

Z1"r\ T# � $
0
2r

¦
2

1r2
−

4

5r3
−

2

3r5
¦

4

01r6%H"T#[ "34a#

The general form of the solution of "34#\ which is subject
to the boundary conditions at the surface of the sphere\
is]

C "i#
1 � s

1

n�9 $
En"T#−Ln"0\ T#

rn¦0
−En"T#rn¦Ln"r\ T#%Pn"z#

¦ s
�

n�2

En"T# 0
0

rn¦0
−rn1Pn"z# "35#

where the functions Ln"r\ T# are given by the following
expressions]

L9"r\ T# � $
r
5

¦
0

13r1
−

0

05r3
¦

0

59r4%H"T#\

L0"r\ T# � 0
0
1

¦
0

3r21W"T#\

L1"r\ T# � $
r
01

−
0
3r

¦
4

13r1
−

0

7r3
¦

4

057r4%H"T#[ "36#

As with the previous functions of T\ the functions En"T#
may be determined by the matching conditions\ which
yield the following results]

E9 �
H"T#

3
\ E0 �

0
1

W"T#\ En � 9 for n − 1[

"37#

Hence\ the _nal expression for C "i#
1 in the time domain

becomes]

C "i#
1 � 0

r
5

−
0
3

¦
6

79r
¦

4

13r1
−

0

05r3
¦

0

59r41H"T#

¦0
r
1

−
0
1

¦
0

3r1
−

0

3r21W"T#P0"z#

¦0
r
01

−
0
3r

¦
4

13r1
¦

2

45r2
−

0

7r3
¦

4

057r41
× H"T#P1"z#[ "38#

6[ The concentration _eld and rate of mass transfer

The practical applications of the problem at hand "e[g[\
for risk assessment or cleanup processes# require infor!
mation on the spread of the contaminant in the porous
medium and of the rate of mass transfer[ Hence\ the
main objective for the solution in this manuscript is the
determination of the contaminant concentration in the
porous medium and the instantaneous rate of mass trans!
port from the sphere[ Summarizing the results of the
previous sections\ one may now obtain solutions for the
concentration _eld in the four sub!domains of the prob!
lem[

First\ during the short time sub!domain ðt � O"0#Ł for
both inner and outer region\ where the di}usion process
dominates\ the unsteady concentration _eld\ correct to
O"Pe1#\ is]

c"r\ z\ t# �
0
r
erfc 0

r−0

1zt1
¦PeW $0−

0
1

¦
2

3r1
−

0

3r21 erfc 0
r−0

1zt1
¦

2
3 0

0
r
−

0

r11 exp"r−0¦t# erfc 0
r−0¦zt

1zt 1%P0"z# w
¦O"Pe1#\ t � O"0#[ "49#

Second\ at long times from the inception of the process\
and for the inner!region\ where t � O"Pe−1# and
r � O"0#\ the concentration function C"i# is given by the
combination of the expressions for C "i#

9 \ C "i#
0 and C "i#

1 \
which yield the following expression]
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C "i# �
H"t#

r
¦Pe E&

erf 0
Pe zt

1 1
1

¦
e−

Pe1

3

Pe zpt' 00r −01

−0
0
1

−
2

3r1
¦

0

3r21H"t# cos ue
¦Pe1 0

r
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−
0
3

¦
6

79r
¦

4

13r1
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0

05r3
¦

0

59r41H"t#

¦0
r
1

−
0
1

¦
0

3r1
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0

3r21 &
erf 0

Pe zt
1 1

1
¦

e−
Pe1t

3

Pe zpt' cos u

¦$0
r
01

−
0
3r

¦
4

13r1
¦

2

45r2
−

0

7r3
¦

4

057r41
× H"t# 0

2
1

cos1 u−
0
11%¦O"Pe2#[ "40#

Third\ for the sub!domain of long times and outer
region\ where t � O"Pe−1# and r �"Pe−0# the following
expression is derived]

C "o# � PeW
0

Pe r $
e−

Pe r
1

"0¦cos u#

1
erfc 0

r

1zt
−

Pe zt
1 1

¦
e

Pe r
1

"0−cos u#

1
erfc 0

r

1zt
¦

Pe zt
1 1%w

¦Pe1 W
0

Pe r $
e−

Pe r
1

cos u−
0
3 0Pe1t¦

r1

t 1
Pe zpt

¦
e−

Pe r
1

"0¦cos u#

3
erfc 0

r

1zt
−

Pe zt
1 1

−
e

Pe r
1

"0−cos u#

3
erfc 0

r

1zt
¦

Pe zt
1 1%w¦O"Pe2#[ "41#

The dimensionless Sherwood number "or its equi!
valent\ the Nusselt number in the problem of heat trans!
fer# is a commonly used parameter in engineering appli!
cations for the determination of the rate of mass transfer[
The Sherwood number is de_ned in terms of the dimen!
sionless variables used so far in this study\ as follows]

Sh � −
gA

9c = n dA

1p
[ "42a#

Therefore\ from the last three equations\ we may
obtain expressions for the time!dependent Sherwood
number in all the sub!domains of the problem[ From
equation "38# the unsteady Sherwood number at short

times from the inception of the process is calculated as
follows]

Sh � 1 00¦
0

zpt1¦O"Pe1#\ t � O"0#[ "42b#

It must be emphasized that the degree of accuracy of
equation "42b# is of the order Pe1\ as indicated[ This
occurs\ because the contaminant concentration expan!
sions in c9 and c0\ from which the last expression is
obtained\ are correct to the order of Pe0[ However\ the c0

term\ which is proportional to Pe\ does not contribute at
all to the total rate of mass transfer\ because it is sym!
metric with respect to the surface of the sphere[

The Sherwood "or Nusselt# number expressions in this
case exhibits the typical "pt#−0:1 behavior of the di}usion
processes[ Thus\ expression "42b# is almost the same as
the expressions derived by Taylor and Acrivos ð01Ł and
Feng and Michaelides ð02\ 03Ł in the case of heat transfer
from a sphere in an in_nite ~uid[ The only di}erence
between the two cases\ is that equation "42b# is correct
to O"Pe1#\ while that for the heat transfer is valid to
O"Pe0¦#[ Given that in this sub!domain the molecular
di}usion dominates entirely the processes of heat and
mass transport\ it is of no surprise that the last expression
is almost the same as the expression of the Nusselt num!
ber in the analogous problem of unsteady heat transfer[
The fact that the two agree\ is a validation that the
expression derived for the concentration _eld at short
times is correct[

Similarly\ one may calculate the Sherwood number at
long times from the inception of the process\ which is]

Sh � 1 60¦Pe $
0
1

erf 0Pe
zt
1 1

¦
0

Pe zpt
exp 0−

Pe1 t
3 1%−

02
79

Pe17
¦O"Pe2#\ t � O"Pe−1#[ "43a#

In the case of long times the resulting expression is
correct to the order Pe2 as indicated[ When compared to
the analogous problem of heat transfer from a particle at
low Reynolds numbers ð02\ 03Ł\ one observes that the _rst
three terms of equation "43# are similar to the analogous
terms for the Nusselt number[ The main di}erence is in
the last term\ which is entirely due to the type of the
velocity _eld obtained\ which a}ects the advection part
of the process[ This agreement in the two processes leads
us to believe that the concentration _elds derived for
the long!time sub!domains are accurate[ In addition\ the
steady!state solution for the Sherwood number "which is
obtained as t : �# is]

Sh � 1¦2Pe−02:39Pe1[ "43b#

This expression agrees exactly with the well!known solu!
tion\ obtained under the creeping ~ow condition
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"Pe � 9#\ which is Sh"Pe�9# � 1[ Thus\ equation "43b#
may be thought of as the extension of the classical creep!
ing ~ow solution in the case of _nite Peclet numbers[

It is observed that both the solutions for short! and
long!times include a function of time\ which is essentially
a history term describing the contaminant transport pro!
cess\ from its inception to the current state[ In the pure
di}usion problem "short times# this term exhibits the
typical time dependence of di}usion processes and varies
at t−0:1[ The same mathematical behavior has been
observed in the unsteady momentum and heat transfer
processes from a sphere to a ~uid ð01Ð06Ł using the creep!
ing ~ow hypothesis "Re : 9 or Pe : 9# where the
di}usion processes dominate in the whole time and space
domain[ In the case of _nite Re or Pe\ where the advection
processes become signi_cant\ at long times from the
inception of the process\ the history terms become more
complex[ The e}ect of the advection process is to accel!
erate the dissipation of these history terms ð03Ð06Ł[ As
seen in the last equation\ the history terms dissipate at
the faster rate of t−0:1 exp"−t# in the case of contaminant
di}usion:advection[ An interesting result in this latter
case\ as shown in equation "43a#\ is that the term of the
order Pe1 is time!independent\ despite the fact that the
concentration distribution depends on time[

Numerical calculations were made for the con!
centration _elds\ given by equations "49#Ð"41#[ In all
cases it was assumed that a � 0\ and Pe � 9[14\ which
results in LI � 3 "the measure of the overlapping area
between the inner and outer regions#[ The initial con!
centration condition is a unit step change at the surface
of the sphere[ This corresponds to the sudden com!
mencement of the leakage at t � 9[ Figure 1 shows the

Fig[ 1[ Concentration distribution for the short!time\ inner
region sub!domain for Pe � 9[14[ On the left side are results for
dimensionless time t � 0 and on the right for t � 1[

concentration _eld\ which results in the inner region for
short times[ The left!hand side of the graph is for dimen!
sionless time t � 0 and the right!hand side for t � 1 "times
are made dimensionless by dividing with the charac!
teristic time of the di}usion process#[ The calculations
show the level of contaminant concentration[ It is
observed that very close to the surface also of the sphere
"r ³ 0[2# the concentration lines do not vary signi_cantly
during this time interval[ It is observed that\ there is an
appreciable change in the concentration lines far from
the surface "r × 1#[ This is an indication that an almost
steady!state condition is quickly established in the
immediate vicinity of the sphere[ However\ the con!
taminant migrates at a faster rate towards the outer
region[

Figure 2 depicts the inner region at dimensionless times
t � 19 "left!hand side# and t � 49 "right!hand side#[ It
is obvious that the combination of the di}usion and
advection processes have brought the contaminant to the
outer region[ Signi_cant time gradients are observed close
to the boundary of the inner and outer regions
"1 ³ r ³ 3#[ The asymmetric "top to bottom# aspects of
the _gure underline the relative signi_cance of the advec!
tion\ which is induced by the vertical ~ow of the outside
~uid[

Figure 3 depicts only the outer region "the con!
centration _eld in the inner region is not shown# at long
times from the inception of the process[ The left!hand
side is for t � 19 and the right!hand side for t � 14[ The
time derivatives are very signi_cant in this sub!domain
and indicate that the process of the spreading of the
contaminant is progressing swiftly[ The importance of
the advection part of this process becomes apparent when

Fig[ 2[ Concentration distribution for long!time\ inner region
sub!domain for Pe � 9[14[ On the left side are results for dimen!
sionless time t � 19 and on the right for t � 49[
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Fig[ 3[ Concentration distribution for the long!time\ outer region
sub!domain for Pe � 9[14[ On the left side are results for dimen!
sionless time t � 19 and on the right for t � 14[

we observe that the gradients are sharper and the con!
taminant is spreading faster in the bottom part of the
_gure than in the upper part[

7[ Solutions for the case of constant mass ~ux at the

surface

One may use the same technique that was described
in the previous sections and obtain the solution to the
unsteady convection problem from a sphere in a satu!
rated porous medium\ when there is a constant mass ~ux
at the surface[ In this case\ the mass ~ux is normalized\
by the condition "−9c = n#r�0 � 0 at the surface of the
sphere and the same method is used to solve the problem
under the constant mass ~ux condition[ In the following
paragraphs we will list the results of the calculations on
the concentration distribution in the porous medium[

In the short!times domain\ ðt � O"0#Ł\ the contaminant
distribution is]

c"r\ z\ t# �
0
r
G9"r\ t#¦PeW 0

0
1

¦
0

3r21G9"r\ t#

¦
2
7r

G0"r\ t#¦
2

7r1
G1"r\ t# wP0"z#

¦O"Pe1#\ t � O"0# "44#

where the functions G9\ G0 and G1 are]

G9"r\ t# � Ert"9#−Ert"0#\

G0"r\ t# � Ert"9#−Im $
0
L0

Ert"L0#−
0
L1

Ert"L1#%
G1"r\ t# � Im ðErt"L0#−Ert"L1#Ł "45#

with

Ert"n# 0 en"r−0#¦n1t erfc 0
r−0

1zt
¦nzt1 \

and L0 � z1 e−j
p

3\ L1 � z1 e j
p

3\ j �z−0[

At long times from the inception of the process
ðt � O"Pe−1#Ł the distribution of the contaminant in the
inner region\ ðr � O"0#Ł\ is]

C "i# �
H"t#

r
¦PeW−$

0
1

erf 0
Pe zt

1 1¦
e−

Pe1

3

Pe zpt%
−0

0
1

−
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7r1
¦

0

3r21H"t# cos uw
¦Pe1 W 0

r
5

¦
0
7r

¦
4

13r1
−

0

21r3
¦

0

59r41H"t#

¦0
r
1

¦
0

3r11 $
0
1

erf 0
Pe zt

1 1¦
e−

Pe1

3

Pe zpt% cos u

¦0
r
01

−
0
7r

¦
4

13r1
−

0

17r2
−

0

05r3
¦

4

057r41
×H"t# 0

2
1

cos1 u−
0
11%w¦O"Pe2#[ "46#

Finally\ the long!time\ outer region ðt � O"Pe−1# and
r � O"Pe−0#Ł solution for the concentration function\
becomes]

C"o# � PeW
0

Pe r $
e−

Pe r
1

"0¦cos u#

1
erfc 0

r

1zt
−

Pe zt
1 1

¦
e

Pe r
1

"0−cos u#

1
erfc 0

r

1zt
¦

Pe zt
1 1%w¦O"Pe2#[ "47#

It must also be pointed out that in the case of constant
mass ~ux and in the sub!domain of long times and outer
region\ the contribution of the second!order term
ðO"Pe1#Ł is zero[ This indicates that the point!source solu!
tion is valid to the second order approximation in the
outer region[ Obviously\ this is not the case with equation
"41# that pertains to the condition of constant surface!
concentration[

8[ Conclusions

The problem of unsteady forced convection mass
transport from a sphere\ immersed in an unbounded
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~uid!saturated porous medium has two time scales and
cannot be solved by a regular perturbation analysis[ A
singular perturbation method may be used to solve this
problem[ The resulting governing equations in four sub!
domains are solved and general expressions for the
unsteady concentration _elds are obtained[ Matching
conditions at the boundaries of the sub!domains deter!
mine the coe.cients of the solutions[ The analytical
expressions of the mass transfer show that the Sherwood
number contains history!dependent terms\ which are
characteristics of di}usion:advection problems[ Similar
terms have been observed in the analogous cases of heat
and momentum transfer from a sphere to an in_nite
~uid[ The results show that a very thin boundary layer is
established close to the surface of the sphere\ where the
velocity gradient is very sharp[ Concentration gradients
are established very fast in the immediate vicinity of the
sphere and spread swiftly in the rest of the inner region[
At long times the advection part of the process becomes
signi_cant\ especially in the outer region of the ~ow[
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Appendix A] the velocity _eld around the sphere

From the governing equations of the problem we
obtain]

C �
K
m

"p¦r`z#\ v � 9C[ "A0#

Hence\ C satis_es the Laplace equation[ Therefore\ the
velocity _eld is a solution to the potential ~ow problem[
After using the boundary condition at in_nity\ the vel!
ocity _eld may be written as]

v � −U¦ s
�

n�0

Bn"=#n9n¦0 0
r

"A1#

where Bn is an nth!order tensor\ and "=#n denotes n times
the inner product[ Utilizing the boundary condition at
the surface of the sphere\ and the condition

91 0
r
�

2

r2
nn−

0

r1
I "A2#

we obtain B0 � U:1\ and Bn � 9"n × 0#[ These results
yield the velocity _eld in "2#[

Appendix B] tangential slip on the sphere

The Brinkman model takes into account the no slip
condition on the surface of the sphere[ Accordingly\ the
velocity _eld in the porous medium is described by the
following expression]

vm �
k
m

9"p¦r`z#¦k91vm[ "B0#

This expression satis_es the no!slip conditions at the sur!
face of the sphere]

vm = n� 9\ vm ="I−nn# � 9 at r � a^ vm � −U

at r : �[ "B1#

It has been shown ð5Ł that an analytical expression of the
Brinkman velocity _eld is]

vm � &0−00¦
2
b

¦
2

b11
a2

r2
¦0b

a1

r1
¦

a2

r21
e−b0

r
a

−01
b1 ' nn = U

¦&0¦00¦
2
b

¦
2

b11
a21

1r2
−0

a
r
¦b

a1

r1
¦

a2

r21
2 e−b0

r
a

−01
1b1 '

×"I−nn# = U "B2#

where b � a1:k[
The exponential functions in "B2# denote the presence

of a boundary layer near the surface of the sphere[ A
measure of the thickness of this boundary layer is a:b[ In
the cases we consider here\ the radius of the sphere is
O"0 m#\ while the soil permeability k is O"09−6 m1#[
Therefore\ b � O"096# and the thickness of the boundary
layer is less than a millionth of the sphere|s radius[ This
size is also by far smaller than the inner region\ as de_ned
in Section 1[ Inside the boundary layer\ there is a very
high velocity gradient in the tangential direction\ with
the velocity increasing rapidly from zero to the value
calculated by Darcy|s law[ Because of the very small
relative size of the boundary layer\ it is acceptable to
neglect it and to consider that there is a step velocity
change from zero "no slip condition# to Darcy|s slip vel!
ocity in the tangential direction to the surface[
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